

Channabasaveshwara Institute of Technology

(Affiliated to VTU, Belgaum & Approved by AICTE, New Delhi) (NAAC Accredited & ISO 9001;2015 Certified Institution) NH 206 (B.H. Road), Gubbi, Tumkur – 572 216, Karnataka.

organizes

1st International Conference on Innovation in Computer Science, Electrical and Electronics Engineering (ICICEE-2020)

In association with

Formal Techniques for Simulations of Distributed Web System Models

Tomasz RAK

Rzeszow University of Technology

Formal Techniques for Simulations of Distributed Web System Models

Tomasz RAK

Department of Computer and Control Engineering Rzeszow University of Technology POLAND

1st International Conference on Innovation in Computer Science, Electrical and Electronics Engineering ICICEE-2020

- Introduction (how to resolve this problem)
- Distributed Web System (layered system structure)
- Web System Models (formal methods)
- Simulations of Formal Models (simulation models)

- Introduction Motivation, a problem statement and my approach

Approaches

(Alba, A., Czachorski, T., Kounev, S., Li, Z., Requeno, J., Bennaceur, W., Vu, D., Xiong, X., Zatwarnicki, K., Zhou, J.)

We can not always add more and more new devices to improve performance, because the initial and maintenance cost will become too high. Power consumption depends on the load and on the number of running nodes in the cluster-based distributed Web system.

The question:

What is the performance of the system?

The main aim of the work was to develop models of cluster-based distributed Web system.

The related works can be divided into publications based on analysis of QN and PN models.

Computer system (experiments) and performance model (simulations)

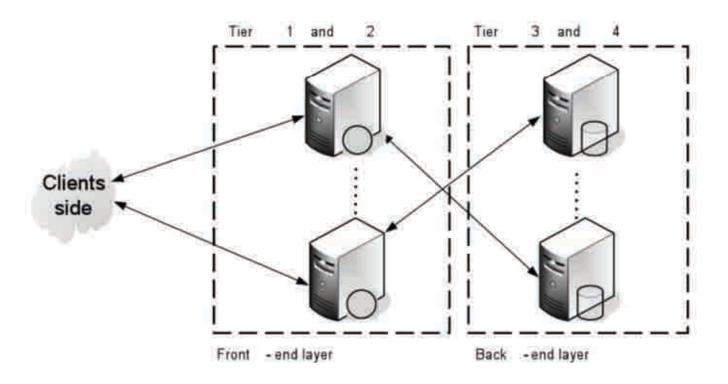
Workload ↓ Configuration parameters

Configuration parameters

Computer system

Measured performance parameters

Performance model


Calculated performance parameters (response time)

Rak, T.: Response Time Analysis of Distributed Web Systems Using QPNs. Mathematical Problems in Engineering (2015) 1–10

- •
- Distributed Web System Multi-layer architecture
- Simple stratule from the first

Model of the system

Two-layers architecture.

- •
- the filter bear and bear
- Web System Models PE formal methods
- Simp aright of Formul Medes

My approach joins LT and PE

- Educated Guess
- Load Testing (LT)
- Performance Engineering (PE) models (provide some recommendations to realize the required performance level):
 - Performance model (used to predict performance of the system under study)
 - Availability model
 - Reliability model
 - Cost model

Rak, T., Werewka, J.: Performance analysis of interactive internet systems for a class of systems with dynamically changing offers. Lecture Notes in Computer Science, vol. 7054, Springer (2012) 109–123

Queueing Nets and Petri Nets

QNs – quantitative analysis

Queueing Nets have queues, scheduling disciplines and are suitable for modeling competition of equipment.

PNs - qualitative analysis

Petri Nets have tokens representing the tasks and are suitable for modeling software.

QNs

- Arrival process¹ e.g. Poisson, Erlang, Hyper-exponential, General
- Service process is the time which each request spends at the station e.g. Logarithmic, Chi-square, Hyper-exponential, Exponential²; Service times are Independent and Identically Distributed
- Scheduling strategies (queueing disciplines) e.g.: First In First Out (FIFO), Last In First Out, Last In First Out with Preempt and Resume, Round Robin with a fixed quantum, Small Quantum ⇒ Processor Sharing (PS), Infinite Server (IS) = fixed delay³
- Number of servers⁴
- Number of buffers (waiting room size⁵)

¹We analyzed closed queueing networks.

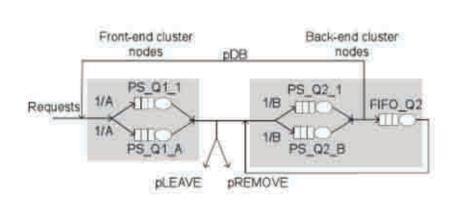
²We analyzed queueing systems with the exponential clients' service process.

³We used IS for clients station, PS for FE servers and FIFO for BE server.

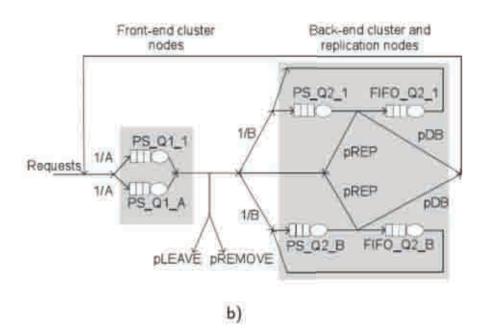
⁴This model considers a single server queue.

⁵Size of the queue is infinite.

PNs

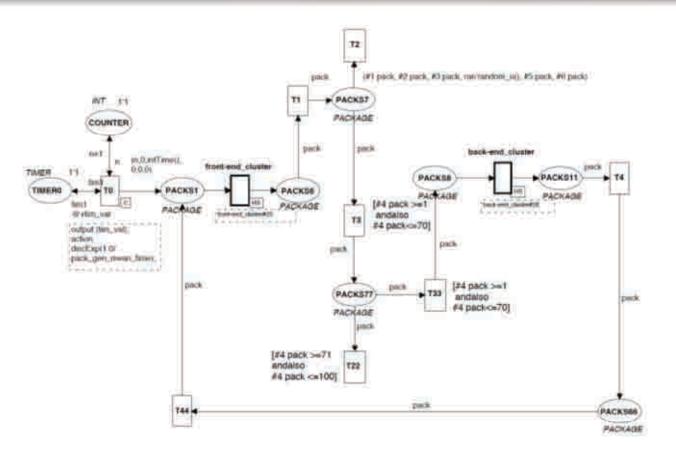

- Set of places
- Set of transitions
- Token color function⁶
- Incidence function (routing probability⁷) assigns natural numbers to arcs (weights of arcs)
- Initial marking⁸ (number of tokens)

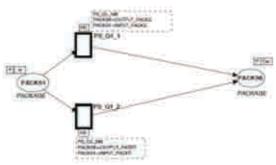
⁶It specifies the types of tokens that can reside in the place and allow transitions to fire in different modes.


⁷Routing of clients contains all system resources in both layers.

⁸It specifies how many tokens are contained in each place.

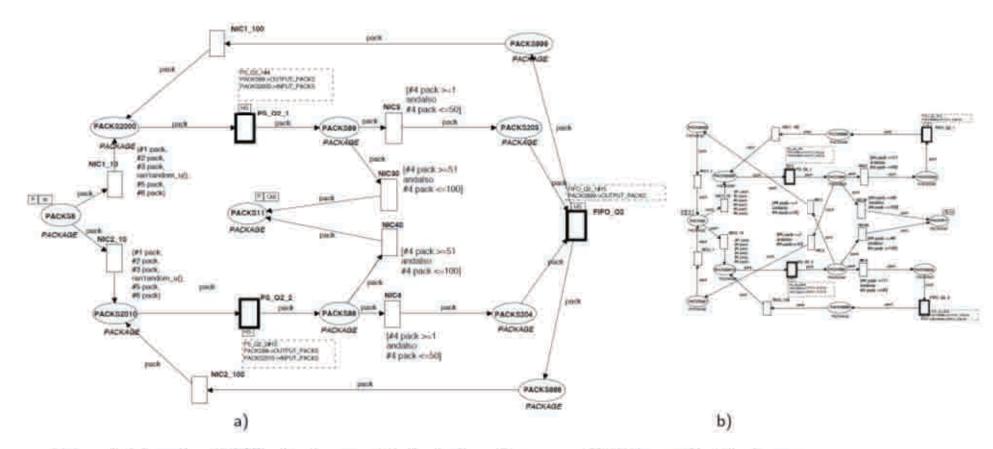
Models in CSIM




a)

Queuing model with clusters in both layers: a) model III, b) model IV.

Models in TCPNs (1)


a)

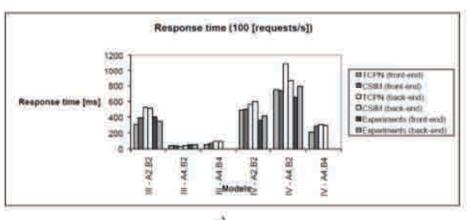
b)

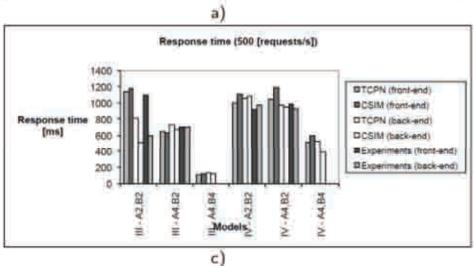
Net models III and IV based on TCPN: a) main page, b) sub-page (front-end).

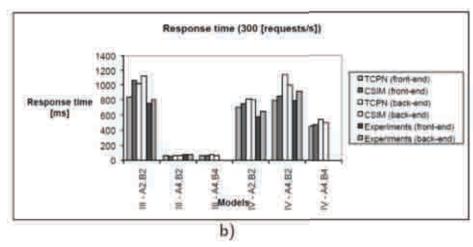
Models in TCPNs (2)

Net models based on TCPN: a) sub-page with the back-end layer - model III (example), b) sub-page with the back-end layer - model IV (example).

The configuration


- A = 4 and B = 2,
- $\lambda = 100, 300, 500[1/s],$
- the same service values for all queues μ = 100[1/s],
- OTQ = 0.0001[s],
- queues M/M/1/PS/∞ and M/M/1/FIFO/∞,
- flow probabilities pLEAVE = 30%, pREMOVE = 30% and pDB = 55%,
- simulation time in all cases 100000[s].
- m=1.


- •


- Simulations of Formal Models Simulation was the main mechanism used to do analysis of the constructed models

Response time

Comparing the results of TCPN simulation models and experiments resulted in errors (III and IV): 13.9% and 14.9%. Comparing the results of CSIM simulation models and experiments resulted in errors (III and IV): 14.3% and 16.6%.

Comparison of response times simulations and experiments results for an average response time [ms]: a) 100[requests/s], b) 300[requests/s] and c) 500[requests/s] as well as

Conclusions

Convergence of simulation results with the real system results confirms correctness

- We can use this analysis to apply the modification of the system without interfering into the system construction or into software (main achievement)
- It is possible to analyze the compromise between perceived average response time and energy consumption by nodes in the system (practical value)
- The average error between simulation results for all cases is about 15%
- TCPN and CSIM simulation results confirm the convergence of models and the possibility to use them in practice

Daniel A. Menascé

"Verify and validate the models (...) a certain acceptable mergin of error (...) resource utilizations within 10%, system throughput within 10%, and response time within 20% are consideren acceptable."

Formal Techniques for Simulations of Distributed Web System Models

Thank you for your attention!

- Introduction (4)
- Distributed Web System (7)
 - Web System Models (9)
- Simulations of Formal Models (18)

Suppose one of you wants to build a tower. Won't you first sit down and estimate the cost to see if you have enough money to complete it? - The Bible, Luke 14:28

